Fixed-Width Output Analysis for Markov Chain Monte Carlo

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A few Remarks on ”Fixed-Width Output Analysis for Markov Chain Monte Carlo” by Jones et al

The aim of this note is to relax assumptions and simplify proofs in results given by Jones et al. in the recent paper ”Fixed-Width Output Analysis for Markov Chain Monte Carlo.”

متن کامل

Multivariate Output Analysis for Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) produces a correlated sample in order to estimate expectations with respect to a target distribution. A fundamental question is when should sampling stop so that we have good estimates of the desired quantities? The key to answering this question lies in assessing the Monte Carlo error through a multivariate Markov chain central limit theorem. However, the multiv...

متن کامل

Relative Fixed-width Stopping Rules for Markov Chain Monte Carlo Simulations

Markov chain Monte Carlo (MCMC) simulations are commonly employed for estimating features of a target distribution, particularly for Bayesian inference. A fundamental challenge is determining when these simulations should stop. We consider a sequential stopping rule that terminates the simulation when the width of a confidence interval is sufficiently small relative to the size of the target pa...

متن کامل

Markov Chain Monte Carlo

Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...

متن کامل

Markov Chain Monte Carlo

This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2006

ISSN: 0162-1459,1537-274X

DOI: 10.1198/016214506000000492